Что такое химическое оксидирование металлов

Содержание
  1. В чем заключается метод оксидации
  2. Науглероживание (цементация)
  3. Характеристика химико-термической обработки
  4. Классификация
  5. Диффузионная металлизация
  6. Азотирование
  7. Виды химико-термических методов
  8. Методы
  9. Химическое оксидирование стали, технология
  10. Термическое оксидирование
  11. Анодная оксидация – что это
  12. Плазменный метод
  13. Лазерное
  14. Оксидирование своими руками
  15. Что дает процесс
  16. Антикоррозийные свойства
  17. Ограничение воздействия внешней среды
  18. Электроизоляционные характеристики
  19. Придание оригинального декоративного вида
  20. Хим оксидирование стали: преимущества
  21. Надежное покрытие антикор
  22. Хорошие электрические изоляторы
  23. Тонкий, но стойкий поверхностный слой
  24. Оригинальная цветовая гамма
  25. Назначение термической обработки
  26. Особенности химической отделки металла на станке
  27. Нагрев заготовки
  28. Цианирование, нитроцементация
  29. Термическое оксидирование
  30. Импульсное лазерное излучение
  31. Непрерывное излучение
  32. Общие принципы
  33. Своими руками
  34. Этапы работ
  35. Грубая зачистка
  36. Полировка
  37. Снятие налета
  38. Обработка
  39. Промывание

В чем заключается метод оксидации

Большинство металлических веществ вступает в активную фазу с различными химикатами. В ряде случаев она происходит с выделением стороннего вещества, которое может стать защитой для основного изделия. В рассматриваемом способе возникает оксидная пленка после нанесения на поверхность специального раствора. оксидирование металлов
Жидкость под влиянием окислительно-восстановительной реакции приводит к созданию верхнего слоя, который увеличивает коррозийную стойкость, а также декорирует плоскость. Следует отметить, что разновидностей процесса несколько, они выбираются в зависимости от того, какого эффекта нужно добиться, а также – какой материал подвергается обработке. Посмотрим более внимательно за видами.

Науглероживание (цементация)

Это насыщение поверхности стальных предметов углеродом. Данная операция улучшает твердость, износостойкость, а также выносливость поверхности материала. Нижележащие слои остаются вязкими.

Данная химико-термическая технология подходит для предметов из низкоуглеродистых сталей (0,25%), подверженных контактному износу и переменным нагрузкам.

Предварительно необходима механическая обработка. Не цементируемые участки покрывают слоем меди либо обмазками.

Температурный режим определяется содержанием углерода в стали. Чем оно ниже, тем больше температура. Для адсорбирования углерода и диффузии в любом случае она должна составлять 900 — 950°С и выше.

Цементация стали

Цементация стали

Таким образом, путем насыщения поверхности стальных деталей углеродом достигают концентрации данного элемента в верхнем слое 0,8 — 1%. Большие значения ведут к повышению хрупкости.

Цементацию осуществляют в среде, называемой карбюризатором. На основе ее фазы технологию подразделяют на газовую, вакуумную, пастами, в твердой среде, ионную.

При первом способе применяют каменноугольный полукокс, древесный уголь, торфяной кокс. С целью ускорения используют активизаторы и повышают температуру. По завершении материал нормализуют. Ввиду длительности и малой производительности данная химико-термическая технология используется в мелкосерийном выпуске.

Вторая технология предполагает использование суспензий, обмазок либо шликеров.

Газовую среду наиболее часто применяют при цементации ввиду скорости, простоты, возможности автоматизации, механизации и достижения конкретной концентрации углерода. В таком случае используют метан, бензол или керосин.

Более совершенный способ — вакуумная цементация. Это двухступенчатый процесс при пониженном давлении. От прочих методов отличается скоростью, равномерностью и светлой поверхностью слоя, отсутствием внутреннего окисления, лучшими условиями производства, мобильностью оборудования.

Ионный метод подразумевает катодное распыление.

Цементация — промежуточная химико-термическая операция. Далее осуществляют закалку и отпуск, определяющие свойства материала, такие как износостойкость, выносливость при контакте и изгибе, твердость. Главный недостаток — длительность.

Характеристика химико-термической обработки

Сущность данного вида обработки стали заключается в том, что химический состав поверхностного слоя меняется искусственным путем. Цель процедуры – увеличение степени прочности поверхности и износостойкости детали.

Состав поверхности изменяется благодаря тому, что в него проникают разные элементы. Это приводит к изменению свойств металла. Осуществляется химико-термическая обработка посредством помещения детали в среду, которая содержит в себе атомы вещества, необходимые для покрытия стального листа. Складывается термическая обработка из трех этапов:

Химико-термическая обработка стали

  • диссоциация;
  • адсорбция;
  • диффузия.

Первый этап – диссоциация – осуществляется посредством создания газовой среды и включает такие процессы, как разложение молекул определенного соединения и образование атомов, проявляющих активность в отношении стальной детали. В процессе адсорбции сталь поглощает свободные активные атомы, находящиеся в газовой смеси или растворе.

Третий этап, получивший название диф­фузионной металлизации стали, заключается в проникновении атомов, подвергшихся адсорбции, вглубь металла. Воздействия внешних сил на этом этапе нет. Процесс осуществляется за счет теплового движения атомов вещества. Если три этапа химико-термической обработки выполнены без ошибок, то полученный слой покрытия будет прочным.

Способ химико-термической обработки стальных изделий

Это интересно: Хромель — химический состав, свойства, термопары

Классификация

Химико-термическая обработка стали подразделяется на основе фазового состояния среды насыщения на жидкую, твердую, газовую.

В первом случае диффузия происходит на фрагментах контакта поверхности предмета со средой. Ввиду низкой эффективности данный способ мало распространен. Твердую фазу обычно используют с целью создания жидких или газовых сред.

Химико-термическая операция в жидкости предполагает помещение предмета в расплав соли либо металла.

При газовом методе элемент насыщения формируют реакции диссоциации, диспропорционирования, обмена, восстановления. Наиболее часто в промышленности для создания газовой и активной газовой сред используют нагрев твердых. Удобнее всего проводить работы в чисто газовой среде ввиду быстрого прогрева, легкого регулирования состава, отсутствия необходимости повторного нагрева, возможности автоматизации и механизации.

Как видно, классификация по фазе среды не всегда отражает сущность процесса, поэтому была создана классификация на основе фазы источника насыщения. В соответствии с ней химико-термическая обработка стали подразделена на насыщение из твердой, паровой, жидкой, газовой сред.

Кроме того, химико-термическая технология подразделена по типу изменения состава стали на насыщение неметаллами, металлами, удаление элементов.

По температурному режиму ее классифицируют на высоко- и низкотемпературную. Во втором случае производят нагрев до аустенитного состояния, а в первом — выше и оканчивают отпуском.

Наконец, химико-термическая обработка деталей включает следующие методы, выделяемые на основе технологии выполнения: цементацию, азотирование, металлизацию, нитроцементацию.

Диффузионная металлизация

Это поверхностное насыщение стали металлами.

Возможно проведение в жидкой, твердой, газовой средах. Твердый метод предполагает использование порошков из ферросплавов. Жидкой средой служит расплав металла (алюминий, цинк и т. д.). Газовый метод предполагает использование хлористых металлических соединений.

Металлизация

Металлизация

Металлизация дает тонкий слой. Это объясняется малой интенсивностью диффузии металлов в сравнении с азотом и углеродом, так как вместо растворов внедрения они формируют растворы замещения.

Такая химико-термическая операция производится при 900 — 1200°С. Это дорогостоящий и длительный процесс.

Основное положительное качество — жаростойкость продуктов. Ввиду этого металлизацию применяют для производства предметов для эксплуатационных температур 1000 — 1200°С из углеродистых сталей.

По насыщающим элементам металлизацию подразделяют на алитирование (алюминием), хромирование, борирование, сицилирование (кремнием).

Первая химико-термическая технология придает материалу стойкость к окалине коррозии, однако на поверхности после нее остается алюминий. Алитирование возможно в порошковых смесях либо в расплаве при меньшей температуре. Второй способ быстрее, дешевле и проще.

Хромирование тоже увеличивает стойкость к коррозии и окалине, а также к воздействию кислот и т. д. У высоко- и среднеуглеродистых сталей оно также улучшает износостойкость и твердость. Данная химико-термическая операция в основном производится в порошковых смесях, иногда в вакууме.

Основное назначение борирования состоит в улучшении стойкости к абразивному износу. Распространена электролизная технология с применением расплавов боросодержащих солей. Существует и безэлектролизный метод, предполагающий использование хлористых солей с ферробором или карбидом бора.

Сицилирование увеличивает стойкость к коррозии в соленой воде и кислотах, к износу и окалине некоторых металлов.

Азотирование

Данным термином называют насыщение материала азотом. Этот процесс производят в аммиаке при 480 — 650°С.

С легирующими данный элемент формирует нитриды, характеризующиеся дисперсностью, температурной устойчивостью и твердостью.

Такая технология химико-термической обработки увеличивает твердость, стойкость к коррозии и износу.

Необходима предварительная механическая и термическая обработка для придания окончательных размеров. Не азотируемые фрагменты покрывают оловом либо жидким стеклом.

Обычно используют температурный интервал от 500 до 520°С. Это дает за 24 — 90 ч. 0,5 мм слой. Толщина определяется длительностью, составом материала, температурой.

Азотирование

Азотирование

Азотирование приводит к увеличению обрабатываемых деталей вследствие возрастания объема верхнего слоя. Величина роста напрямую определяется его толщиной и температурным режимом.

При жидком способе применяют цианосодержащие, реже бесцианитные и нейтральные соли. Ионная химико-термическая операция отличается повышенной скоростью.

Азотирование подразделяют по целевым свойствам: им достигается или улучшение устойчивости к коррозии, либо повышение стойкости к износу и твердости.

Это интересно: Пассивирование металла: назначение, технология, методы

Виды химико-термических методов

Во время ХТО протекают разные реакции, однако, на поверхности обрабатываемой детали происходят одни и те же процессы в одинаковой последовательности. Стадии химической отделки:

  • Начало реакции. На этом этапе происходит перенос диффундирующих веществ к обрабатываемому элементу;Химико-термическая обработка металлов
    Химико-термическая обработка металлов
  • Диффузия;
  • Завершение реакции. На этом этапе происходит усовершенствование физико-химических свойств металла;
  • Финальная обработка вещества часто проводится на токарном или фрезерном станке для закрепления приобретенных свойств.

В современной металлургии практикуют несколько методов ХТО:

  • Цементация – это процесс насыщения металлического изделия углеродом. Химическая обработка позволяет получить уникальное вещество с прочной оболочной и мягкой сердцевиной;
  • Азотирование – это процесс насыщения поверхностного слоя азотом с целью улучшения устойчивости материала к изнашиванию и коррозии;Виды химико-термической обработки
    Виды химико-термической обработки
  • Борирование – это совокупность технологических процессов по насыщению металлов бором. Сырье, насыщенное бором, отличается высокими износоустойчивыми качествами, особенно к трению и сухому скольжению. Помимо этого, бор создает на поверхности металла слой, повышающий устойчивость к холодной сварке. Также борированные материалы отличаются устойчивостью к щелочным веществам и разным видам кислот;
  • Алитирование – обработка металла на станке алюминием. Технология позволяет получить стойкие материалы к агрессивным газам (сероводороду или серному ангидриду);
  • Хромирование – процесс обогащения хромом верхних слоев металла. Хромирование не увеличивает прочность металлического изделия, зато повышает износостойкость и устойчивость к коррозии. Стоит отметить, что твердое хромирование значительно улучшает свойства металлических изделий, например, у обработанного вещества повышается прочность, износостойкость и стойкость к коррозии.

Методы

Каждый из них обладает определенной популярностью, большинство применяется на заводах в определенных условиях. Но есть возможность самостоятельного проведения металлообработки. При этом стоит помнить о возможном негативном воздействии на организм и средствах защиты.

Химическое оксидирование стали, технология

На поверхность металлического изделия наносится жидкий раствор, сухая смесь или расплав. Затем между этими элементами происходит реакция (в определенных условиях, например, с доступом кислорода, при выставленном температурном режиме). Ее результатом становится образование неактивного верхнего слоя – эту процедуру называют пассивацией, то есть верхний слой делают пассивным по отношению к некоторым средам. Чаще всего для этих целей применяются окислы хрома. химическое оксидирование
Заготовка закрепляется тем или иным образом и погружается в ванну с заготовленным раствором (это возможно при нескольких условиях – при соответствующих размерах объекта и резервуара и при стенках сосуда, которые не вступают в реакцию). Щелочной или кислотный состав создается заблаговременно и обладает определенным процентным соотношением. В зависимости от параметров определяется степень выдержки. Спустя необходимое время деталь достается, подвергается сушке, а затем проводятся финишные работы по металлообработке. При создании кислотной ванны с наибольшей вероятностью применяют такие кислоты, как соляная, азотная, ортофосфорная. Если добавить капсулы марганца, хрома или калия, то протекание будет ускорено. Обычно выбирается температурный режим в рамках от +30 до +100 градусов. Если в качестве основы соединения нитрата натрия и диоксида марганца, то можно говорить о применении щелочного раствора, который нагревается уже значительно сильнее – до 300 градусов. Также есть две разновидности, когда применяют дополнительные вещества, влияющие на качество полученного результата:

  • бихромат калия позволяет закрепить итоговые достижения;
  • масло – такой процесс называют оксидацией с промасливанием или химоксидированием, при котором удается не только добиться высокой устойчивости к ржавлению, но и получить черный глянцевый цвет поверхности.

Термическое оксидирование

Это аналогичный способ, в ходе которого образуется защитная оксидная пленка, но он проходит при повышенной температуре при непосредственном контакте с водяным паром или с кислородом. Для данного действия требуются специальные печи, которые могут поддерживать режим работы вплоть до 1200 градусов – для различных материалов характерны свои показатели. оксидирование стали
Если вы хотите улучшить эффект, рекомендуем предварительно погрузить деталь в мыльный раствор на несколько минут, а после этого высушить и залить ванночку машинным или трансформаторным маслом. Если произвести нагрев до 105 градусов и выше, то можно добиться равномерной, блестящей черной поверхности.

Анодная оксидация – что это

Ее также называют электрохимическим оксидированием или анодированием. Это еще один вариант, как можно достаточно быстро получить оксидную пленку в жидкости или сухой смеси. Основной процесс, который заложен в основе технологии – это электролиз, который, как известно, может проходить и в жидких, и в твердых средах. хим оксидирование это
Элемент помещается в раствор. Между ним и жидкостью образуется разница потенциалов – у верхних слоев он изначально положительный, а у смеси – отрицательный. Следует отметить, что подача напряжения, а также использование активных реагентов приводит к тому, что процедура считается небезопасной, по крайней мере для домашнего воплощения. При анодировании достигается две задачи – декоративное оформление и создание защитного слоя. Чаще всего этому подвергается алюминий, который по своей природе не обладает достаточными характеристиками жесткости, прочности, устойчивости к механическим воздействиям. В зависимости от того, какая кислота используется, а также какие параметры напряжения выставлены, можно добиться полученной пленки различной толщины. Тонкими они будут, если применять B(OH)₃ (борную) или H₃PO₄ (ортофосфорную). Но если нужно придать интересный оттенок оксидированной стали, то следует использовать органические кислоты, например, щавелевую, малеиновую, сульфосалициловую. Используют также и слабощелочные составы, чтобы погружать в них детали и пропускать слабый переменный или импульсный ток. Данный процесс называется микродуговой обработкой и отличается тем, что можно достичь хороших результатов. Поверхность не только хорошо смотрится и не ржавеет, но и становится более теплостойкой, приобретает изоляционные качества. оксидация это
Особенный подход нужно применять к нержавеющей стали. Она является инертным, то есть нейтральным сплавом. Как можно понять, добиться разности потенциалов в таком случае достаточно сложно. Поэтому процедура становится двухступенчатой. Сперва проводится двойное анодирование – то есть в ванну с составом погружают не только нержавейку, но и еще один элемент, который по своим характеристикам больше подходит для процесса. Для этих целей годится никель, медь.

Второй этап – это уже самостоятельное оксидирование нержавеющей стали. Но чтобы повысить эффективность и ускорить достижение результата, рекомендовано наносить пассивирующие пасты. Их назначение – ускорение реакции.

Плазменный метод

Также его называют микродуговым. Его особенность в том, что создается плазма с большим содержанием кислорода. При этом она не нагревается, поддерживаются низкие температуры. Сама генерация потока происходит под воздействием зарядов, которые, в свою очередь, образуются под влиянием переменного или импульсного тока высокой или сверхвысокой частоты. Обычно способ применяется, когда нужно создать оксидную пленку с целью защиты на относительно небольшой поверхности изделия. Чаще всего используется технология в электронике и микроэлектронике, например, при производстве полупроводников, транзисторов, диодов, микросхем. Второе назначение – увеличение светочувствительности, поэтому применяют процедуру для повышения чувствительности в фотокатодах. Иногда все же более целесообразно делать плазму с повышенной температурой – до 430 градусов и выше. Качество при этом сильно повышается. К преимуществам микродугового оксидирования стоит отнести:

  • Слой оксида может достигать до 70% вглубь основной заготовки.
  • Толщина около 200 – 250 мкм.
  • Очень хорошо обрабатывать элементы, имеющие сложный рельеф.
  • Отличное поведение на магниевых и алюминиевых сплавах.

Лазерное

С целью увеличения коррозийной стойкости можно добиться образования оксидной пленки на сталь, используя установку лазера. Особенность процесса в том, что для его совершения обязательно нужна специализированный станок. Наиболее эффективно зарекомендовало себя применение волоконного лазера в инфракрасном диапазоне свечения. Можно использовать три методики:

  • импульсное излучение;
  • непрерывный световой поток;
  • точечный нагрев материала.

Отметим, что технология требует достаточно высоких затрат, а также не подходит для больших металлических элементов конструкций. Хорошо применять для ограниченных плоскостей, используя станки с ЧПУ.

Оксидирование своими руками

Если нужно сделать оксидную пленку дома, то для хорошего результата следует строго следовать последовательности действий, а также придерживаться правил безопасности. химическое оксидирование стали технология
Ниже мы более подробно расскажем о поэтапном проведении самостоятельной оксидации, но сперва обсудим – а зачем это делать?

Что дает процесс

Производители деталей из металла знают, что основная проблема, почему их продукция быстро выходит из строя, – это образование коррозии. Дело в том, что фактически любое вещество, обладающее металлическими свойствами, достаточно сильно подвергается влиянию внешней среды. Это влажность, температурные перепады, солнечное излучение, реакции с кислородом, а также загрязнения и естественный износ. Посмотрим, что дает оксидирование для производителей.

Антикоррозийные свойства

Даже при постоянном нахождении на улице под дождем и при контакте с воздухом не происходит ржавления. Это очень актуально для элементов корпуса автомобилей и других предметов, которые преимущественно эксплуатируются вне помещения.

Ограничение воздействия внешней среды

Есть некоторые средства, которые являются агрессорами по отношению к металлу. Проще говоря, они разрушают его поверхность и даже проникают более глубоко в структуру, нарушая целостность. Это пары химикатов или жидкости, а также самый обыкновенный ультрафиолет.

Электроизоляционные характеристики

Ряд деталей должен стать диэлектриком, то есть не пропускать электричество. С такой задачей отлично справляется создаваемый диэлектрический слой.

Придание оригинального декоративного вида

Это может быть черный глянцевый блеск или более экзотический перелив различных цветов. Смотрится очень красиво, причем практичность остается такой же высокой.

Хим оксидирование стали: преимущества

Теперь перечислим особенности, которых можно добиться, если использовать технологию создания оксидной пленки с помощью химикатов.

Надежное покрытие антикор

Стальная деталь фактически становится нержавейкой. что такое оксидирование
То есть ржавление хоть и не полностью исключено, но очень значительно заторможено.

Хорошие электрические изоляторы

После химической обработки можно ожидать, что поверхность совсем или частично перестает проводить ток. Все будет зависеть от того, какой раствор был взят, в какой концентрации и пр.

Тонкий, но стойкий поверхностный слой

Интересно, что может быть достигнута пленочка, толщиной всего в 200 мкм. Но это не делает ее более восприимчивой к механическим или иным вредителям.

Оригинальная цветовая гамма

Это больше признак анодирования. оксидированное покрытие это
Но мы отметим, что после процедуры можно получить не только черный цвет, но и переливчатые волны от желтого к темно-синему, как на фото.

Назначение термической обработки

Главная задача термической обработки изделия из стали — придать ему требуемое эксплуатационное качество или совокупность таких качеств. При термообработке режущего инструмента из инструментальных и легированных сталей достигается твердость 63 HRC и повышенная износостойкость. А ударный инструмент после нее должен иметь твердый поверхностный слой и пластичную ударопрочную сердцевину. Стали для изготовления пружин и рессорных пластин после термической обработки становятся прочными на изгиб и упругими, а металл для рельсов — устойчивым к деформациям и износу. Кроме того, термическими способами производят упрочнение поверхностных слоев стальных изделий, насыщая их при высокой температуре углеродом, азотом или другими соединениями, а также укрепляя закалкой нагартовку после горячей обработки давлением. Другое назначение термической обработки — это восстановление изначальных свойств металла, которое достигается их отжигом.

Особенности химической отделки металла на станке

Обработка металла на станке может производиться только после подготовки изделия на специальных устройствах – агрегатах первичной подготовки. Подготовка учитывает физико-химические свойства обрабатываемой детали, а также индивидуальные потребности каждого отдела на предприятии.

Способы воздействия на металл:

  • Распыление применяется к деталям, которые используются в тупиковых или проходных устройствах. Преимуществами этого метода являются возможность массовой подготовки элементов;Способы воздействия на металл
    Способы воздействия на металл
  • Погружение. Эта технология требует на производстве наличия отдельно стоящих емкостей со специальными растворами. На таком станке, обычно, стоят механизмы для разводки и смешивания металлического изделия. После погружения материал отправляется в сушильную камеру, где происходит окончательное формирование его новых физико-химических параметров. Обработанные детали отправляются на склад, откуда их развозят по предприятиям, где с ними будут работать уже другие станки;Пароструйная обработка металла
    Пароструйная обработка металла
  • Пароструйный метод применяется для подготовки крупных механизмов или габаритных металлических листов. Процесс подготовки начинается с очищения металлической поверхности от жира и пыли. Одновременно с очисткой происходит фосфатирование обрабатываемой плоскости. Стоит отметить, что на этом этапе все работы выполняются вручную, а не на станке. Первичная обработка заканчивается термическим воздействием – поверхность заготовки обрабатывают паяльной лампой. Термическая обработка производится одновременно с добавлением активных элементов.

Для отделки материала перечисленными способами используется оборудование двух типов: стационарные и передвижные станки. Стоит отметить, что на стационарном станке величина давления может достигать 5 атмосфер. Высокое давление обеспечивает лучшее проникновение химических компонентов в верхние слои железа. Передвижное оборудование, как правило, не отличается высокой мощностью, поэтому с их участием производится только грубая обработка заготовки.

Токарная обработка металла
Токарная обработка металла

На токарном станке производится окончательная подготовка материала перед химической отделкой. Стоит отметить, что на токарном станке можно не только подготавливать, но и работать с заготовкой. На таком устройстве выполняется нарезание резьбы, сверление, развертывание и зенкерование разных отверстий; вытачивание канавок и отрезание частей. Стационарное устройство применяется для снятия ржавчины или удаления последствий коррозии.

Нагрев заготовки

Нагрев заготовки — ответственная операция. От правильности ее проведения зависят качество изделия, производительность труда. Необходимо знать, что в процессе нагрева металл меняет свою структуру, свойства и характеристику поверхностного слоя и в результате от взаимодействия металла с воздухом атмосферы, и на поверхности образуется окалина, толщина слоя окалины зависит от температуры и продолжительности нагрева, химического состава металла. Стали окисляются наиболее интенсивно при нагреве больше 900°С, при нагреве в 1000°С окисляемость увеличивается в 2 раза, а при 1200°С — в 5 раз.

Хромоникелевые стали называют жаростойкими потому, что они практически не окисляются.

Легированные стали образуют плотный, но не толстый слой окалины, который защищает металл от дальнейшего окисления и не растрескивается при ковке.

Углеродистые стали при нагреве теряют углерод с поверхностного слоя в 2-4 мм. Это грозит металлу уменьшением прочности, твердости стали и ухудшается закаливание. Особенно пагубно обезуглероживание для поковок небольших размеров с последующей закалкой.

Заготовки из углеродистой стали с сечением до 100 мм можно быстро нагревать и потому их кладут холодными, без предварительного прогрева, в печь, где температура 1300°С. Во избежание появлений трещин высоколегированные и высокоуглеродистые стали необходимо нагревать медленно.

При перегреве металл приобретает крупнозернистую структуру и его пластичность снижается. Поэтому необходимо обращаться к диаграмме «железо-углерод», где определены температуры для начала и конца ковки. Однако перегрев заготовки можно при необходимости исправить методом термической обработки, но на это требуется дополнительное время и энергия. Нагрев металла до еще большей температуры приводит к пережогу, от чего происходит нарушение связей между зернами и такой металл полностью разрушается при ковке.

Цианирование, нитроцементация

Это технология насыщения стали азотом и углеродом. Таким способом обрабатывают стали с количеством углерода 0,3 — 0,4%.

Соотношение между углеродом и азотом определяется температурным режимом. С его ростом возрастает доля углерода. В случае пересыщения обоими элементами слой обретает хрупкость.

На размер слоя влияет длительность выдержки и температура.

Цианирование проводится в жидкой и газовой средах. Первый способ называют также нитроцементацией. Кроме того, по температурному режиму оба типа подразделяют на высоко- и низкотемпературные.

При жидком способе используют соли с цианистым натрием. Основной недостаток — их токсичность. Высокотемпературный вариант отличается от цементации быстротой, большими износостойкостью и твердостью, меньшей деформацией материала. Нитроцементация дешевле и безопаснее.

Нитроцементация стали

Нитроцементация стали

Предварительно производят окончательную механическую обработку, а не подлежащие цианированию фрагменты покрывают слоем меди в 18 — 25 мкм толщиной.

Термическое оксидирование

Представим таблицу с некоторыми сплавами, которые наиболее часто подвергают оксидации:

Название Температура, °с Особенности, назначение, использование
Низколегированные стали или железо 300-350 Второе название – воронение. Очень распространенный способ, основная его задача – декоративная металлообработка, так как деталь приобретает черный (вороной) цвет. Пример применения – создание стрелкового оружия. Еще одно преимущество – исходные размеры сохраняются, потому что оксидная пленка образуется очень тонкая, не более одного-полутора микрона.
Легированные стальные элементы до 700 Нанесение состава занимает продолжительный период – не менее 1 часа.
Железоникелевые магнитные сплавы 400 – 800 Процесс длится на протяжении 0,5 – 1,5 часов. Возникает слой, который считается диэлектриком, поэтому от просто необходим при создании электрических полупроводников.
Кремний 800 – 1200 Процедура имеет название термокомпрессионной. Она проходит под большим давлением до 107 па. Подвергаемые ей изделия необходимы в электронике.

Импульсное лазерное излучение

Когда нагрев происходит не в печи, как при термическом методе, а с помощью лазера, то результат получается хороший, хоть и процесс – более трудный. До настоящего момента проводятся исследования, какие материалы как следует подвергать воздействию луча, но одним из вариантов является импульсы – то есть короткая подача потока на участок с постепенным смещением головки установки.

Непрерывное излучение

В таком случае обрабатываются только прочные стали, которые не боятся перегрева под постоянным воздействием. На зону направляется луч, который непрерывно перемещается по всей области оксидирования. Соответственно, нагрев получается очень значительный.

Общие принципы

Суть данной технологии состоит в преобразовании внешнего слоя материала насыщением. Химико-термическая обработка металлов и сплавов осуществляется путем выдерживания при нагреве обрабатываемых материалов в средах конкретного состава различного фазового состояния. То есть, это совмещение пластической деформации и температурного воздействия.

Это ведет к изменению параметров стали, в чем состоит цель химико-термической обработки. Таким образом, назначение данной технологии — улучшение твердости, износостойкости, коррозионной устойчивости. В сравнении с прочими технологиями химико-термическая обработка выгодно отличается тем, что при значительном росте прочности пластичность снижается не так сильно.
Основные ее параметры — температура и длительность выдержки.

Рассматриваемый процесс включает три этапа:

  • диссоциацию;
  • адсорбцию;
  • диффузию.

Интенсивность диффузии увеличивается в случае формирования растворов внедрения и снижается, если вместо них формируются растворы замещения.

Количество насыщающего элемента определяется притоком его атомов и скоростью диффузии.

На размер диффузионного слоя влияют температура и длительность выдержки. Данные параметры связаны прямой зависимостью. То есть с ростом концентрации насыщающего элемента возрастает толщина слоя, а повышение интенсивности теплового воздействия приводит к ускорению диффузии, следовательно, за тот же промежуток времени она распространится на большую глубину.

Большое значение для протекания процесса диффузии имеет растворимость в материале обрабатываемой детали насыщающего элемента. В данном случае играют роль пограничные слои. Это объясняется тем, что ввиду наличия у границ зерен множества кристаллических дефектов диффузия происходит более интенсивно. Особенно это проявляется в случае малой растворимости насыщающего элемента в материале. При хорошей растворимости это менее заметно. Кроме того, диффузия ускоряется при фазовых превращениях.

Своими руками

Представленные выше способы применяются только на производстве, но если вы готовы к самостоятельным экспериментам, то нужно создать небольшую домашнюю лабораторию. оксидирование металла что это такое
Для эксперимента возьмите небольшую стальную деталь, которая без проблем поместится в трехлитровую банку.

Этапы работ

Выполняйте каждый из них последовательно и тщательно. Заранее подготовьте все необходимые инструменты.

Грубая зачистка

Возьмите щетку по стали или наждачку с крупным зерном. Вам нужно убрать всю ржавчину до основания, а также другие загрязнения. Лучше, если вы потом пройдетесь мелкозернистой наждачной бумаги для однородности поверхности.

Полировка

Отлично подойдут специальные пасты с мелким абразивом или диски на ручных шлифовальных машинках.

Снятие налета

Иными словам – избавьте элемент от жира, масляных следов, а также остатков полировальной пасты.

Обработка

Для этого наведите раствор серной кислоты с 5% содержанием вещества и поместите туда заготовку на 1 минуту. стать хим оксидирование металла

Промывание

Сперва ополосните деталь в обычной проточной воде, а затем прокипятите ее в мыльном водном составе. Теперь в емкости сделайте 5% раствор едкого натра, поместите туда заготовку и нагрейте до 150 градусов, выдержите в течение 2 часов. Потом просто дайте ему остыть и оцените результат. У вас получилось оксидированное покрытие – это прекрасный эффект, достигнутый в домашних условиях.

Источники

  • https://www.rocta.ru/info/chto-takoe-himicheskoe-oksidirovanie-metallov-tekhnologiya-oksidacii/
  • https://tk-metal.ru/obrabotka-metalla/khimicheskaya-obrabotka.html
  • https://intehstroy-spb.ru/spravochnik/himiko-termicheskaya-obrabotka-metallov.html
  • https://promtu.ru/obrabotka-metallov/him-termo-otdelka-zheleza

Оцените статью